B.Sc. (Sem. - 4) Physics

Course: US04CPHY21

Electromagnetic Theory and Spectroscopy UNIT-3 Lecture 1

Atomic Spectra

UNIT - 3 Atomic Spectra - Topics

- Investigation of Spectra
- Production of Spectra
- Types of Spectra
- Wave Number
- Shortcomings of Bohr theory
- Criticism and limitations of old quantum mechanical models
- The Spinning Electron
- Space Quantization
- Quantum Numbers and their Physical Interpretation
- Fine structure of Hydrogen atom
- Spectral terms and their notations

- Positronium
- Mesonic atoms
- L-S Coupling
- J-J Coupling
- Experimental study of Zeeman Effect
- Classical Interpretation of Normal Zeeman Effect
- Vector model and normal Zeeman effect
- Paschen-Back effect
- Stark Effect

UNIT - 3 Atomic Spectra – Reference Books

Text Books:

- Introduction to Electrodynamics David J Griffiths, (4th Edition) Prentice-Hall of India Private Ltd.
- 2. Elements of Spectroscopy
 - S L Gupta, V Kumar, R C Sharma (24th Edition) Pragati Prakashan

Reference Books:

- Electricity and Magnetism
 A S Mahajan and A A Rangwala
 Tata McGraw Hill Publishing Company Ltd
- 2. Molecular structure and Spectroscopy
 - G Aruldhas, Prentice-Hall of India Private Limited

UNIT - 3 Atomic Spectra

Spectroscopy - Importance

- Spectroscopy-important branch of sciences
 - [Chemistry, Physics, Astronomy, etc.]
- Due to development of Spectroscopy it is possible
 - Development of Atomic Physics and Molecular Physics
 - Development of Theoretical and Experimental Physics
 - Understanding of Periodic Table
 - Understanding of the type of Chemical Bonds
 - It is possible to predict something about Earth and Sun (its environment etc.)

Spectrum:

When light dispersed through the prism is focused on a screen, then the formation of a regular array of colors on the screen is observed. This regular arrangement of colors is named as spectrum. It is a study of spectrum.

Spectroscopy is used as a tool for studying the structures of atoms and molecules.

The branch of science concerned with the investigation and measurement of spectra produced when matter interacts with or emits electromagnetic radiation.

Investigation of Spectra

Investigation of Spectra

Two Methods:

[1] Refraction Method For the separation of components of light Prisms are employed

Advantage: High intensity

[2] Diffraction Method

For the separation of components of light *Grating* are employed

Advantage: High resolving power

Investigation of Spectra

Methods/Instruments used

Far Infrared (IR) Spectrum	Thermopiles and bolometer
Below 13000 A ⁰	Photographic films
30,000 A ⁰ to 3600 A ⁰	Lenses, Prisms, windows of glass
Up to 1800 A ⁰	Quartz
1800 A ⁰ to 1250 A ⁰	Fluorite
Below 1250 A ⁰	Refraction grating

Production of Spectra

Production of Spectra - BASIC Principle:

Normal atom excited so that electron jump from normal orbit to outer orbit.

Transition of electron from upper level to lower orbit emit the light.

In each transition a definite amount of energy is absorbed or released.

The intensity of spectral line depends on the probability of the transition.

Production of Spectra

Temperature Radiation Method	Luminescence Method
	(a)Electroluminescence Method
	(b) Chemiluminescence Method
	(c) Photoluminescence Method

Types of Spectra

Emission Spectrum

Absorption Spectrum

Emission SpectrumAbsorption SpectrumWhite lines are formed on the
black background.Black lines are formed on the
white background.

The differences between them are given below.

Emission Spectrum	Absorption Spectrum
Formed when atoms or	Formed when atoms or
molecules are de-excited from	molecules are excited from
higher energy level to lower	lower energy level to higher
energy level.	energy levels.

Continuous Spectra-Characteristics

- 1 Continuous Spectrum contain wide range of continuous wavelength lines which are not separable.
- 2 **The intensity is not uniformly distributed** over the entire observed spectrum.

□ The intensity is maximum at a particular wavelength and decrease on both sides of the point of maximum intensity.

Continuous Spectra-Characteristics

3 The point of maximum intensity shifts towards violet (higher frequency side) of the spectrum as the temperature of the solid is increased.
□ This is known as Wein's displacement law.
□ λ_m T= constant

Continuous Spectra-Characteristics

4 The general appearance of a continuous spectrum is **independent of the material of the source of radiation** so long as the material is in position of emitting continuous spectra. When white light from sun or any incandescent body or lamp is passed through a prism, it disperses into its component colors and a spectrum is obtained known as Continuous Spectrum.

- Examples:
- Spectrum of sunlight,
- Incandescent solids and liquids, bulb light,
- Tube light.

Discontinuous Spectra

Line Spectra-Characteristics

- LINE-spectra consists of discrete wavelengths distributed throughout the spectra. The wavelengths of the lines are the characteristics of the elements concerned.
- The line spectra are produced by atoms i.e. atomic spectra.

Line Spectra-Characteristics

Examples:

Vapour in flame Metallic arc and spark

Line Spectra-Characteristics

- 1 The wavelengths of the lines are the characteristics of the elements concerned.
- 2 The lines are regularly arranged and differ in intensity.
- 3 Shows multiple character and possess fine and hyperfine structure.
- 4 Dark line on a bright background or bright lines on a dark background are observed.
- 5 Lines can be grouped in series.

Band Spectra-Characteristics

Band Spectra-Characteristics

Band spectra are produced when the emitting substance is in the molecular state.

They are called **Molecular Spectra**.

Strips of graded intensity showing a continuous spectrum but divided into bands.
 Examples: the carbon arc with metallic salts
 CO₂ and N₂ gases in vacuum tubes etc.

Band Spectra-Characteristics

The bands are observed in a dark region
 and they are arranged in a regular
 sequence forming a groups of bands.

2 A regular arrangement of groups of bands form a **band system**.

Band Spectra-Characteristics

3 Each band system contains several lines separated from one another.

The lines are closer on one side and wider on other side

4 The lines in a bands are characteristic of molecules and depend upon the mode of oscillations.

5 The appearance is changed as the type of the molecule is changed.

Absorption Spectra

An element can absorb light at specific wavelengths

An absorption spectrum can be obtained by passing a continuous radiation spectrum through a vapor of the gas

The absorption spectrum consists of a series of dark lines superimposed on the otherwise continuous spectrum

The dark lines of the absorption spectrum coincide with the bright lines of the emission spectrum

Examples :

- 1. The continuous absorption spectrum is obtaining by putting a pure red glass in the path of the light having continuous spectrum. The red glass absorbs every radiation except red.
- 2. By putting the **sodium vapor** in the path of continuous light, two famous dark sodium lines (D_1 and D_2) are obtained on the bright background.

The continuous spectrum emitted by the Sun passes through the cooler gases of the Sun's atmosphere.

The various absorption lines can be used to identify elements in the solar atmosphere led to the discover of helium Frequency (v) is more fundamental than wavelength (λ) but **is not directly measures in the laboratory**.

Therefore, for theoretical purpose, frequency is computed from the relation

$$- \mathbf{C} = \lambda \mathbf{v} \quad \rightarrow \quad \mathbf{v} = \mathbf{C} / \lambda$$

Unit vibrations/sec

Wave Number

In spectroscopy, Wave Number defined as
 Unit cm⁻¹ – 1

Number of waves per unit length

Advantage:

No need to involve speed of light (c) and so they retain all the accuracy of spectroscopy.

Wave Number

Wave number energy equivalence Using Plank's relation

$$\Delta E = h \upsilon = h \frac{c}{\lambda} = h c \overline{\upsilon}$$

For change in energy

corresponding to $1m^{-1}$

 $\Delta E = 6.62 \times 10^{34} \times 3 \times 10^8 \times 1$

 $\Delta E = 1.986 \times 10^{-25}$ joule / molecule

Wave Number

Wave number energy equivalence Using Plank's relation

$$\Delta E = h \upsilon = h \frac{c}{\lambda} = h c \overline{\upsilon}$$

For change in energy

corresponding to 1 cm⁻¹

 $\Delta E = 6.62 \times 10^{34} \times 3 \times 10^8 \times 100$

 $\Delta E = 1.986 \times 10^{-23}$ joule / molecule

```
For change in energy
 corresponding to 1 cm<sup>-1</sup> is
 \Delta E = 1.986 \times 10^{-23} joule/molecule
\therefore \Delta E = \frac{1.986 \times 10^{-23}}{1.6 \times 10^{-19}}
 \Delta E = 1.239 \times 10^{-4} \text{ eV}
```

```
A one mole contains molecules
equal to the Avegrado No
and 1J = 4.18 \, cal, hence
\Delta E = \frac{1.986 \times 10^{-23} \times 6.023 \times 10^{23}}{10^{23}}
                      4.18
      =2.858 cal / molecule
  1eV = 23.06 kcal / mole
```

